The line of best fit to model the data in the table is y = 5.2x – 0.4. a 2-column table with 5 rows. the first column is labeled x with entries 1, 2, 3, 4, 5. the second column is labeled y with entries 8, 13, 18, 23, 24. what is the residual for 5? –1.6 –0.6 0.6 1.6

Respuesta :

From the line of the best fit y = 5.2x -0.4 for the considered data, the residual for x = 5 is given by: Option A: -1.6

How to find the residual value for a given input output pair?

Suppose the given input output pair be (x,y) (actual data point)

Then suppose the prediction be y' from the line of best fit for that input x.

Then the residual value will be calculated for that point as:

Residual value = Actual value - Predicted value

Residual = y - y'

Here, we're given the data as:

         x                         y

         1                          8

         2                        13

         3                        18

         4                        23

         5                        24

The line of best fit for this data is [tex]y= 5.2x -0.4[/tex]

For x = 5, the real corresponding y value is 24, and the predicted value is:

[tex]5.2(5) -0.4 = 25.6[/tex]

Thus, the residual for x=5 is: y - y' = 24 - 25.6 = -1.6

Thus, from the line of the best fit y = 5.2x -0.4 for the considered data, the residual for x = 5 is given by: Option A: -1.6

Learn more about residual here:

https://brainly.com/question/3870996

Answer:

The answer is A: -1.6

Step-by-step explanation:

Doing the assignment on edge rn and got the question right