2. Find the sum of the geometric series.

Answer:
324
Step-by-step explanation:
** The attachment shows an arithmetic sequence **
Sum of Arithmetic Series formula
[tex]S_n=\dfrac12n(a+l)[/tex]
where:
[tex]a_n=2n-1[/tex]
[tex]\implies a_1=2(1)-1=1[/tex]
[tex]\implies a_{18}=2(18)-1=35[/tex]
[tex]\implies S_{18}=\dfrac12(18)(1+35)=324[/tex]
[tex]\\ \rm\Rrightarrow \sum^{18}_{n=1}2n-1[/tex]
[tex]\\ \rm\Rrightarrow 2(1)-1+2(2)-1\dots+2(18)-1[/tex]
So
[tex]\\ \rm\Rrightarrow S_n=\dfrac{n(a+l)}{2}[/tex]
[tex]\\ \rm\Rrightarrow S_n=\dfrac{18(1+35)}{2}=9(36)=324[/tex]