Respuesta :

Answer:

[tex]x=\frac{3}{2}[/tex]

Step-by-step explanation:

Step 1.  Put each term in [tex]3x-\frac{1}{2}[/tex] over the common denominator 2.

[tex]\frac{6x}{2}-\frac{1}{2}[/tex]

Therefore we have [tex](\frac{6x}{2}-\frac{1}{2})=4[/tex]

Step 2.

Combine [tex]\frac{6x}{2}-\frac{1}{2}[/tex] into a single fraction.

[tex]\frac{6x-1}{2}[/tex]  

Therefore we have [tex](\frac{1}{2}(6x-1))=4[/tex]  or [tex]\frac{6x-1}{2}=4[/tex]

Step 3.

Multiply both sides by a constant to simplify the equation.

Multiply both sides of [tex]\frac{6x-1}{2}=4[/tex]  by 2:

[tex]\frac{2*(6x-1)}{2}=4*2[/tex]

Step 4.

Cancel the common terms in the numerator and denominator of   [tex]\frac{2*(6x-1)}{2}[/tex]

Then we get [tex]\frac{2}{2}*(6x-1)[/tex]  which simplifies to [tex](6x-1)[/tex]

So all together we have [tex](6x-1)=2*4[/tex]

Step 5.

Multiply 2 and 4 together and remove the parenthesis.

[tex]6x-1=8[/tex]

Step 6.

Isolate terms with the variable x to the left hand side.

So add 1 to both sides:

[tex]6x+(1-1)=8+1[/tex]

Evaluate   [tex]1-1=0[/tex]  which cancels out

Step 7.

Add the like terms on the right side:

[tex]6x=9[/tex]

Step 8.

Divide both sides by a constant to simplify the equation.

Divide both sides of [tex]6x=9[/tex]  by 6.

[tex]\frac{6x}{6} =\frac{9}{6}[/tex]

Any non-zero number divided by itself is 1.

[tex]x=\frac{9}{6}[/tex]  which simplifies to [tex]x=\frac{3}{2}[/tex]