Respuesta :
Answer:
[tex]x=\frac{3}{2}[/tex]
Step-by-step explanation:
Step 1. Put each term in [tex]3x-\frac{1}{2}[/tex] over the common denominator 2.
[tex]\frac{6x}{2}-\frac{1}{2}[/tex]
Therefore we have [tex](\frac{6x}{2}-\frac{1}{2})=4[/tex]
Step 2.
Combine [tex]\frac{6x}{2}-\frac{1}{2}[/tex] into a single fraction.
[tex]\frac{6x-1}{2}[/tex]
Therefore we have [tex](\frac{1}{2}(6x-1))=4[/tex] or [tex]\frac{6x-1}{2}=4[/tex]
Step 3.
Multiply both sides by a constant to simplify the equation.
Multiply both sides of [tex]\frac{6x-1}{2}=4[/tex] by 2:
[tex]\frac{2*(6x-1)}{2}=4*2[/tex]
Step 4.
Cancel the common terms in the numerator and denominator of [tex]\frac{2*(6x-1)}{2}[/tex]
Then we get [tex]\frac{2}{2}*(6x-1)[/tex] which simplifies to [tex](6x-1)[/tex]
So all together we have [tex](6x-1)=2*4[/tex]
Step 5.
Multiply 2 and 4 together and remove the parenthesis.
[tex]6x-1=8[/tex]
Step 6.
Isolate terms with the variable x to the left hand side.
So add 1 to both sides:
[tex]6x+(1-1)=8+1[/tex]
Evaluate [tex]1-1=0[/tex] which cancels out
Step 7.
Add the like terms on the right side:
[tex]6x=9[/tex]
Step 8.
Divide both sides by a constant to simplify the equation.
Divide both sides of [tex]6x=9[/tex] by 6.
[tex]\frac{6x}{6} =\frac{9}{6}[/tex]
Any non-zero number divided by itself is 1.
[tex]x=\frac{9}{6}[/tex] which simplifies to [tex]x=\frac{3}{2}[/tex]