Respuesta :

The function [tex]f(x) =\frac{x - 4}{x^2 + 13x + 36}[/tex] is a rational function

The simplified expression of the function [tex]f(x) =\frac{x - 4}{x^2 + 13x + 36}[/tex] is [tex]f(x) =\frac{x - 4}{(x + 9)(x + 4)}[/tex]

How to simplify the function?

The function expression is given as:

f(x) =x - 4/x^2 + 13x + 36

Rewrite properly as:

[tex]f(x) =\frac{x - 4}{x^2 + 13x + 36}[/tex]

Expand the denominator

[tex]f(x) =\frac{x - 4}{x^2 + 4x + 9x + 36}[/tex]

Factorize the denominator

[tex]f(x) =\frac{x - 4}{x(x + 4) + 9(x + 4)}[/tex]

Factor out x + 9

[tex]f(x) =\frac{x - 4}{(x + 9)(x + 4)}[/tex]

Hence, the simplified expression of the function [tex]f(x) =\frac{x - 4}{x^2 + 13x + 36}[/tex] is

[tex]f(x) =\frac{x - 4}{(x + 9)(x + 4)}[/tex]

Read more about rational functions at:

https://brainly.com/question/1851758