Respuesta :

The expression [tex](\frac{x^a}{x^b})^{a + b} \cdot (x^{b + c})^{b - c} \cdot (x^{c + a})^{c - a}[/tex] is an algebraic expression, and the result of simplifying the expression [tex](\frac{x^a}{x^b})^{a + b} \cdot (x^{b + c})^{b - c} \cdot (x^{c + a})^{c - a}[/tex] is 1

How to simplify the expression?

The expression is given as:

[tex](\frac{x^a}{x^b})^{a + b} \cdot (x^{b + c})^{b - c} \cdot (x^{c + a})^{c - a}[/tex]

Apply the power rule of indices

[tex](x^{a-b})^{a + b} \cdot (x^{b + c})^{b - c} \cdot (x^{c + a})^{c - a}[/tex]

Expand the exponents of the expression

[tex]x^{a^2-b^2} \cdot x^{b^2 - c^2} \cdot x^{c^2 - a^2[/tex]

Apply the product rule of indices

[tex]x^{a^2-b^2+b^2 - c^2+c^2 - a^2[/tex]

Collect like terms

[tex]x^{a^2- a^2-b^2+b^2 - c^2+c^2[/tex]

Evaluate the differences

[tex]x^{0-0 - 0[/tex]

This gives

[tex]x^{0[/tex]

Evaluate the exponent

1

Hence, the result of simplifying the expression [tex](\frac{x^a}{x^b})^{a + b} \cdot (x^{b + c})^{b - c} \cdot (x^{c + a})^{c - a}[/tex] is 1

Read more about simplifying expressions at:

https://brainly.com/question/723406