Respuesta :

answer:

the probability of choosing a gray button is 3/5

after putting it back the probability remains the same, so 3/5 for both answers

Answer:

[tex]\sf \dfrac{3}{10}[/tex] = 0.3 - 30%

Step-by-step explanation:

[tex]\sf Probability\:of\:an\:event\:occurring = \dfrac{Number\:of\:ways\:it\:can\:occur}{Total\:number\:of\:possible\:outcomes}[/tex]

Given:

  • Grey buttons = 3
  • White buttons = 2
  • Total buttons = 5

[tex]\sf P(gray) = \dfrac35[/tex]

If the button is not replaced, there are now:

  • Grey buttons = 3 - 1 = 2
  • White buttons = 2
  • Total buttons = 5 - 1 = 4

[tex]\sf P(gray) = \dfrac24=\dfrac12[/tex]

Therefore,

[tex]\sf P(gray)\:AND\:P(gray)= \dfrac35 \times \dfrac12=\dfrac{3}{10}[/tex]