Respuesta :

Answer:

24.8 ft (1 dp)

Step-by-step explanation:

Arc length of semicircle = [tex]\pi r[/tex]  (where r is the radius)

Given:

  • diameter = 4 ft
  • ⇒ radius = 4 ÷ 2 = 2ft
  • [tex]\pi[/tex] = 3.14

⇒ Arc length = 2 × 3.14 = 6.28 ft

Use Pythagoras' Theorem [tex]a^2+b^2=c^2[/tex] to find the hypotenuse of the right triangle with legs 2 ft and 4 ft:

[tex]\implies 2^2+4^2=c^2[/tex]

[tex]\implies c^2=20[/tex]

[tex]\implies c=\sqrt{20}=2\sqrt{5}\:\sf ft[/tex]

Therefore:

perimeter = 6 + 6.28 + 6 + 2 + 2√5

                = 24.75213596...

                = 24.8 ft (1 dp)

Perimeter of semicircle

  • πr
  • 6.28

#Rectangle

  • 2(6+4)
  • 2(10)
  • 20ft-4(2)=12ft

For triangle

Use Pythagorean theorem

  • H²=4²+²=16+4=20
  • H=4.5

Total Perimeter

  • 12+6.5+6.28
  • 24.78ft