Respuesta :

Answer:

They bisect each other.

Step-by-step explanation:

→Solution,

Here, coordinate of quadrilateral DEFG are D(-3,-5), E(-4,3), F(2,6) and G(3,-2).

⇒For diagonal DF.

Let,(x1,y1)=(-3,-5)

     (X2,Y2)=(2,6)

→Using midpoint formula.

[tex]x=\frac{x_1+x_2}{2} ,y=\frac{y_1+y_2}{2} \\\\x=\frac{-3+2}{2} ,y=\frac{-5+6}{2}\\\\x=\frac{-1}{2} ,y=\frac{1}{2}[/tex]

⇒For diagonal EG.

Let,(x1,y1)=(-4,3)

     (X2,Y2)=(3,-2)

→Using midpoint formula.

[tex]x=\frac{x_1+x_2}{2} ,y=\frac{y_1+y_2}{2} \\\\x=\frac{-4+3}{2} ,y=\frac{-2+3}{2}\\\\x=\frac{-1}{2} ,y=\frac{1}{2}[/tex]

Here, the midpoint of diagonal DF and EG is equal.

Hence they bisect each other.

Midpoint of DF and EG must be same

#DF

M(x,y)

  • ((-3+2)/2,(-5+6)/2)
  • (-1/2,1/2)

#EG

P(x,y)

  • ((-4+3)/2,(3-2)/2)
  • (-1/2,1/2)

As mid points are equal diagonals bisect each other