Answer:
r=10%
I=1149.60
P=2874
t=(I×100)/(p×r)
(1149.60×100)/(2874×10)
114960÷28740
4 years
[tex]r = 10\%[/tex]
[tex]p = 2874[/tex]
[tex]l = 1149.60[/tex]
the numbers of year's needed for the investment.
[tex]t = \frac{l \times 100}{p \times r} [/tex]
[tex]t = \frac{1149.60 \times 100}{2874 \times 10} [/tex]
[tex]t = \frac{114960}{28740} [/tex]
[tex]t = 4[/tex]
therefore, 4 years is needed for the investment.