What is the simplified form of the following expression? assume y not-equals 0. rootindex 3 startroot startfraction 12 x squared over 16 y endfraction endroot

Respuesta :

The equivalent expression of the expression [tex]\sqrt[3]{\frac{12x^2}{16y}}[/tex] is [tex](\frac{3x^2}{4y})^\frac 13[/tex]

How to determine the equivalent expression?

The expression is given as:

[tex]\sqrt[3]{\frac{12x^2}{16y}}[/tex]

Divide 12 in the expression by 4

[tex]\sqrt[3]{\frac{3x^2}{16y}}[/tex]

Divide 16 in the expression by 4

[tex]\sqrt[3]{\frac{3x^2}{4y}}[/tex]

Apply the power rule of indices

[tex](\frac{3x^2}{4y})^\frac 13[/tex]

Hence, the equivalent expression of [tex]\sqrt[3]{\frac{12x^2}{16y}}[/tex] is [tex](\frac{3x^2}{4y})^\frac 13[/tex]

Read more about equivalent expression at:

https://brainly.com/question/2972832