Respuesta :

  • (1,-3)
  • (-1,5)

Slope=

  • m=5+3/-1-1
  • m=8/-2
  • m=-4

Equation in point slope form

  • y+3=-4(x-1)
  • y+3=-4x+4
  • y=-4x+1

Answer:

[tex]y=-4x+1[/tex]

Step-by-step explanation:

We have been given two points on the line, so:

[tex]\textsf{let}\:(x_1,y_1)=(-1,5)[/tex]

[tex]\textsf{let}\:(x_2,y_2)=(1,-3)[/tex]

Calculate the slope using the slope formula:

[tex]\textsf{slope}\:(m)=\dfrac{y_2-y_1}{x_2-x_1}=\dfrac{-3-5}{1-(-1)}=-4[/tex]

From inspection of the graph, it appears that the y-intercept (where the line crosses the y-axis) is at (0, 1).  However, just to be sure, use the point-slope form of linear equation.

Point-slope form of linear equation:  [tex]y-y_1=m(x-x_1)[/tex]

(where m is the slope and (x₁, y₁) is a point on the line)

[tex]\implies y-5=-4(x-(-1))[/tex]

[tex]\implies y-5=-4x-4[/tex]

[tex]\implies y=-4x+1[/tex]

Therefore, the equation of the line in slope-intercept form is:

[tex]y=-4+1[/tex]