Respuesta :
Volume of a tetrahedron with edge s
[tex]\\ \rm\Rrightarrow V=\dfrac{s^3}{6\sqrt{2}}[/tex]
According to question
- s=4in
[tex]\\ \rm\Rrightarrow V=\dfrac{4^3}{6\sqrt{2}}[/tex]
[tex]\\ \rm\Rrightarrow V=\dfrac{64}{6\sqrt{2}}[/tex]
[tex]\\ \rm\Rrightarrow V=\dfrac{32}{3\sqrt{2}}[/tex]
[tex]\\ \rm\Rrightarrow V=\dfrac{32}{4.2426406871192}[/tex]
[tex]\\ \rm\Rrightarrow V\approx 7.5425in^3[/tex]

Answer:
See below ~
Step-by-step explanation:
Volume of a tetrahedon
- V = s³ / 6√2
- s = edge length
Solving for V
- V = (4)³ / 6√2
- V = 64 / 6√2
- V = 32 / 3√2
- V = 32√2 / 6
- V = 16√2 / 3
- V = 7.54 cubic inches
Graph
