Respuesta :

Answer:

  • [tex]\boxed{\sf{4t+\dfrac{4}{5} }}[/tex]

Step-by-step explanation:

In order to solve this, you must use the distributive property.

[tex]\sf{\dfrac{4\left(5t+1\right)}{5}}[/tex]

Distributive property:

⇒ A(B+C)=AB+AC


⇒ 4(5t+1)

Multiply by expand.

4*5t=20t

4*1=4

Rewrite the problem down.

20t+4

20t+4/5

[tex]\text{FRACTION RULES: }\\\\\\\Longrightarrow: \sf{\dfrac{A\pm \:B}{C}=\dfrac{A}{C}\pm \dfrac{A}{C}}[/tex]

[tex]\Longrightarrow: \sf{\dfrac{20t+4}{5}=\dfrac{20t}{5}+\dfrac{4}{5}}[/tex]

You have to divide the numbers from left to right.

⇒ 20/5=4

[tex]\Longrightarrow: \boxed{\sf{4t+\dfrac{4}{5} }}[/tex]

  • Therefore, the correct answer is 4t+4/5.

Answer:

[tex]4t + \frac{4}{5}[/tex]

Step-by-step explanation:

Step 1:  Distribute

[tex]\frac{4(5t + 1)}{5}[/tex]

[tex]\frac{(4 * 5t) + (4 * 1)}{5}[/tex]

[tex]\frac{20t + 4}{5}[/tex]

Step 2:  Isolate the numerator into two fractions

[tex]\frac{20t +4}{5}[/tex]

[tex]\frac{20t}{5} + \frac{4}{5}[/tex]

[tex]4t + \frac{4}{5}[/tex]

Answer:  [tex]4t + \frac{4}{5}[/tex]