Respuesta :
Answer:
- [tex]\boxed{\sf{4t+\dfrac{4}{5} }}[/tex]
Step-by-step explanation:
In order to solve this, you must use the distributive property.
[tex]\sf{\dfrac{4\left(5t+1\right)}{5}}[/tex]
Distributive property:
⇒ A(B+C)=AB+AC
⇒ 4(5t+1)
Multiply by expand.
4*5t=20t
4*1=4
Rewrite the problem down.
20t+4
20t+4/5
[tex]\text{FRACTION RULES: }\\\\\\\Longrightarrow: \sf{\dfrac{A\pm \:B}{C}=\dfrac{A}{C}\pm \dfrac{A}{C}}[/tex]
[tex]\Longrightarrow: \sf{\dfrac{20t+4}{5}=\dfrac{20t}{5}+\dfrac{4}{5}}[/tex]
You have to divide the numbers from left to right.
⇒ 20/5=4
[tex]\Longrightarrow: \boxed{\sf{4t+\dfrac{4}{5} }}[/tex]
- Therefore, the correct answer is 4t+4/5.
Answer:
[tex]4t + \frac{4}{5}[/tex]
Step-by-step explanation:
Step 1: Distribute
[tex]\frac{4(5t + 1)}{5}[/tex]
[tex]\frac{(4 * 5t) + (4 * 1)}{5}[/tex]
[tex]\frac{20t + 4}{5}[/tex]
Step 2: Isolate the numerator into two fractions
[tex]\frac{20t +4}{5}[/tex]
[tex]\frac{20t}{5} + \frac{4}{5}[/tex]
[tex]4t + \frac{4}{5}[/tex]
Answer: [tex]4t + \frac{4}{5}[/tex]