Step-by-step explanation:
We know the quadratic formula, which is :
[tex] \\ {\longrightarrow \qquad{ \sf{x = \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }}} \\ \\ [/tex]
Here,
So,
[tex] \\ {\longrightarrow \qquad{ \sf{x = \frac{ - ( - 6) \pm \sqrt{ {( - 6)}^{2} - 4(1)( - 5) } }{2(1)} }}} \\ \\ [/tex]
[tex] {\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm \sqrt{ 36 - 4( - 5) } }{2} }}} \\ \\ [/tex]
[tex]{\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm \sqrt{ 36 + 20 } }{2} }}} \\ \\ [/tex]
[tex]{\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm \sqrt{ 56 } }{2} }}} \\ \\ [/tex]
[tex]{\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm \sqrt{ 2(28) } }{2} }}} \\ \\ [/tex]
[tex]{\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm \sqrt{ 2(2)(14) } }{2} }}} \\ \\ [/tex]
[tex]{\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm \sqrt{ 2(2)(2)(7) } }{2} }}} \\ \\ [/tex]
[tex]{\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm \sqrt{ 2} . \sqrt{2} . \sqrt{2 . 7} }{2} }}} \\ \\ [/tex]
[tex]{\longrightarrow \qquad{ \sf{x = \frac{ 6 \pm 2 \sqrt{14} }{2} }}} \\ \\ [/tex]
Now, Separating the solutions :
[tex] \\ {\longrightarrow \qquad{ \sf{x = \frac{ 6 + 2 \sqrt{14} }{2} }}} \\ \\ [/tex]
[tex] {\longrightarrow \qquad{ \sf{x = 3 + \sqrt{14}}}}\\ \\ [/tex]
[tex]\\ {\longrightarrow \qquad{ \sf{x = \frac{ 6 - 2 \sqrt{14} }{2} }}} \\ \\ [/tex]
[tex] {\longrightarrow \qquad{ \sf{x = 3 - \sqrt{14}}}}\\ \\ [/tex]