Which expression is equivalent to startfraction (3 m superscript negative 2 baseline n) superscript negative 3 baseline over 6 m n superscript negative 2 baseline endfraction? assume m not-equals 0, n not-equals 0.

Respuesta :

The expression that is equivalent to the given statement was reduced.

The given expression is:

[tex]\frac{(3m^{-2}n)^{-3} }{6mn^{-2} }[/tex]

What are some important power rules?

Some important power rules are:

[tex](ab)^n=a^nb^n[/tex]

[tex](a^{m} )^n=a^{mn}[/tex]

[tex]a^m.a^n=a^{m+n}[/tex]

[tex]\frac{a^m}{a^n} =a^{m-n}[/tex]

[tex]a^{-m} =\frac{1}{a^m}[/tex]

So, the given expression can be written as:

[tex]\frac{3^{-3} m^{6} n^{-3} }{6mn^{-2} }[/tex]

=[tex](\frac{3^{-3} }{6} )*(\frac{m^{6} }{m} )*(\frac{n^{-3} }{n^{-2} } )[/tex]

=[tex](\frac{1}{3^{3} *6} )*m^{5} *(\frac{1}{n^{3} *n^{-2} } )[/tex]

=[tex]\frac{m^5}{162n}[/tex]

Hence, the expression that is equivalent to the given statement was reduced.

To get more about power rules visit:

https://brainly.com/question/819893