Given that
[tex]\vec A = xz^3 \, \vec\imath - 2x^2 y \, \vec\jmath + 2yz^4 \, \vec k[/tex]
its curl is
[tex]\displaystyle \nabla\times\vec A = \left(\frac{\partial\left(2yz^4\right)}{\partial y} - \frac{\partial\left(-2x^2y\right)}{\partial z}\right) \, \vec\imath - \left(\frac{\partial\left(2yz^4\right)}{\partial x} - \frac{\partial\left(xz^3\right)}{\partial z}\right) \, \vec\jmath \\ ~~~~~~~~~~~~ + \left(\frac{\partial\left(-2x^2y\right)}{\partial x} - \frac{\partial\left(xz^3\right)}{\partial y}\right) \, \vec k[/tex]
[tex]\nabla\times\vec A = 2z^4 \, \vec\imath + 3xz^2 \, \vec\jmath - 4xy \, \vec k[/tex]
so that at the point (1, -1, 1), the curl is
[tex]\nabla\times\vec A \bigg|_{(x,y,z)=(1,-1,1)} = \boxed{2 \, \vec\imath + 3 \, \vec\jmath + 4 \, \vec k}[/tex]