NO LINKS!!!

Three statements were made about each problem. Two are true and one is false. Mark each statement as true or false and rewrite the false statement to make it true. ​

NO LINKSThree statements were made about each problem Two are true and one is false Mark each statement as true or false and rewrite the false statement to make class=

Respuesta :

Answer:

Step-by-step explanation:

Ver imagen xenia168

Answer:

1)  True, True, False

Rewritten statement:  46,013.86 cm³ of water was used to fill 40 balloons

2) False, True, True

Rewritten statement:   The formula [tex]\sf V= \sf \dfrac43 \pi (2.4)^3[/tex] can be used to find the volume of the model of Earth.

3) True, False, True

Rewritten statement:  The volume of all the basketballs is 13,467.62 in³

Step-by-step explanation:

Question 1

[tex]\textsf{Volume of a sphere}=\sf \dfrac43 \pi r^3 \quad \textsf{(where r is the radius)}[/tex]

Given:

  • r = 6.5 cm

Substituting the given radius into the formula:

[tex]\begin{aligned}\implies \sf V & = \sf \dfrac43 \pi (6.5)^3\\\\& =\sf \dfrac{2197}{6} \pi \\\\& = \sf 1150.35\: cm^3 \:(nearest\:hundredth)\end{aligned}[/tex]

[tex]\textsf{Volume of 40 balloons}=\sf 40 \times \dfrac{2197}{6} \pi=46013.86\:cm^3\:(nearest\:hundredth)[/tex]

Rewritten statement:  46,013.86 cm³ of water was used to fill 40 balloons

-------------------------------------------------------------------------------------------------------

Question 2

[tex]\textsf{Volume of a sphere}=\sf \dfrac43 \pi r^3 \quad \textsf{(where r is the radius)}[/tex]

Earth

Given:

  • diameter = 4.8 cm ⇒ r = 2.4 cm

Substituting the given radius into the formula:

[tex]\implies \sf V= \sf \dfrac43 \pi (2.4)^3[/tex]

[tex]\implies \sf V=57.91\:cm^3\:(nearest\:hundredth)[/tex]

Rewritten statement:  

The formula [tex]\sf V= \sf \dfrac43 \pi (2.4)^3[/tex] can be used to find the volume of the model of Earth.

Saturn

Given:

  • diameter = 45.6 cm ⇒ r = 22.8 cm

Substituting the given radius into the formula:

[tex]\implies \sf V= \sf \dfrac43 \pi (22.8)^3[/tex]

[tex]\implies \sf V=49647.02\:cm^3\:(nearest\:hundredth)[/tex]

Difference between models= 49,647.02 - 57.91 = 49,589.11 cm³

-------------------------------------------------------------------------------------------------------

Question 3

[tex]\textsf{Volume of a cylinder}=\sf \pi r^2 h \quad\textsf{(where r is the radius and h is the height)}[/tex]

Given:

  • r = 21 in
  • h = 54 in

Substituting the given values into the formula:

[tex]\implies \sf V=\pi (21)^2(54)[/tex]

[tex]\implies \sf V=23814\pi[/tex]

[tex]\implies \sf V=74813.89\:in^3\:(nearest\:hundredth)[/tex]

[tex]\textsf{Volume of a sphere}=\sf \dfrac43 \pi r^3 \quad \textsf{(where r is the radius)}[/tex]

Given:

  • diameter = 9.5 in ⇒ r = 4.75 in
  • 30 basketballs

[tex]\begin{aligned}\textsf{Volume of all 30 basketballs} &=\sf 30 \times \dfrac{4}{3}\pi (4.75)^3\\ & =\sf 13467.62\:in^3\:(nearest\:hundredth)\end{aligned}[/tex]

Rewritten statement:  The volume of all the basketballs is 13,467.62 in³

Empty space in the container = volume of container - volume of basketballs

⇒ 74813.89 - 13467.62 = 61,346.27 in³

Otras preguntas