Janis was offered two different jobs when she graduated from college. she made the graph and table to show how much she would earn over time at each job. earnings over time for job 1 earnings over time for job 2 a graph entitled earnings over time for job 1 has year on the x-axis and earnings in dollars on the y-axis. a line with positive slope goes through (0, 40,000) and (10, 60,000). y = 2,000 x 40,000. a 2-column table entitled earnings over time for job 2 has 7 rows. the first column is labeled year with entries 10, 12, 14, 16, 18, 20, 22. the second column is labeled earnings in dollars with entries 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000. when will janis’s salary be the same for job 1 and job 2, and how much will she be earning at that point? the salaries will be the same in year 20, and she will be earning $80,000. the salaries will be the same in year 16, and she will be earning $70,000. the salaries will be the same in year 12, and she will be earning $60,000. the salaries will be the same in year 10, and she will be earning $55,000.

Respuesta :

The salaries will be the same in year 20 and she will be earning $80,000. So, the first option is correct.

What is the Point-slope form?

The equation of the straight line has its slope and given point.

If we have a non-vertical line that passes through any point(x1, y1) has gradient m. then general point (x, y) must satisfy the equation

                  y-y₁ = m(x-x₁)

Which is the required equation of a line in a point-slope form.

We will first create an equation to represent the data.

To find the slope we use the formula

m = (y₂-y₁)/(x₂-x₁)

= (60,000-55,000) / (12-10)

= 5,000/2 = 2500

Writing this in point-slope form, we have

y-y₁ = m(x-x₁)

y-55,000 = 2500(x-10)

Converting to slope-intercept form,

y-55,000 = 2500 × x - 2500 × 10

y - 55,000 = 2500x - 25,000

y = 2500x + 30,000  

Now we set this equal to the equation from the graph:

2500x + 30,000 = 2000x + 40,000

Subtract 2000x from both sides:

2500x + 30,000 - 2000x = 2000x + 40,000 - 2000x

500x + 30,000 = 40,000

500x = 40,000 - 30,000

500x = 10,000

x = 10,000/500

x = 20

The salaries will be the same in year 20.

y= 2000(20) + 40,000

y= 40,000 + 40,000

= 80,000

The salary in year 20 will be $80,000.

Learn more about a point-slope form;

https://brainly.com/question/12743204

Answer:

A

Step-by-step explanation:

80k

Edge 2022