Respuesta :

Answer :

  • Slope is 3

Explaination :

As we know that slope is denoted by the letter m and is calculated by the formula:

  • [tex]\red{\boxed{\sf{Slope (m) \: = \: \dfrac{y_{2} \: - \: y_{1} }{x_{2} \: - \: x_{1}} }}} \: \bigstar[/tex]

We have :

  • x₁ = 3
  • x₂ = 5
  • y₂ = 7
  • y₁ = 1

Putting the values :

[tex]: \: \longrightarrow \: \sf{Slope (m) \: = \: \dfrac{ 7 \: - \:1 }{5\: - \:3 } } \\ \\ : \: \longrightarrow \: \sf{Slope (m) \: = \: \dfrac{6 }{5\: - \:3 } } \\ \\ : \: \longrightarrow \: \sf{Slope (m) \: = \: \dfrac{6 }{2} } \\ \\ : \: \longrightarrow \: \sf{Slope (m) \: = \: \cancel\dfrac{6 }{2} } \\ \\ : \: \longrightarrow \: \pink{\bf{Slope (m) \: = \: 3 }}[/tex]

Additional Information :

Centroid of a triangle :-

  • [tex]\boxed{ \sf{Centroid \: = \: \dfrac{x_1 \: + \: x_2 \: + \: x_3}{3} }} \: \pink\bigstar[/tex]

Distance Formula :-

  • [tex]\huge \large \boxed{\sf{{d \: = \: \sqrt{(x _{2} - x _{1}) {}^{2} \: + \: (y _{2} - y _{1}) {}^{2} }}}} \: \red\bigstar[/tex]

Midpoint of two points:-

  • [tex]\boxed{ \sf{M \: = \: \dfrac{x_1 \: + \: x_2 }{2} \: , \: \dfrac{y_1 \: + \: y_2 }{2}}} \: \pink\bigstar[/tex]