Answer: y + [tex]\frac{12}{7}[/tex]x = -[tex]\frac{16}{7}[/tex]
Step-by-step explanation:
Standard form is Ay + Bx = C,
Given:
y+4=-12/7(x-1)
Rewrite:
y + 4 = [tex]\frac{-12}{7}[/tex](x - 1)
Distribute:
y + 4 = [tex]\frac{-12}{7}[/tex]x + [tex]\frac{12}{7}[/tex]
Subtract 4 from both sides:
y = [tex]\frac{-12}{7}[/tex]x + [tex]\frac{12}{7}[/tex] - 4
Add [tex]\frac{12}{7}[/tex]x to both sides:
y + [tex]\frac{12}{7}[/tex]x = + [tex]\frac{12}{7}[/tex] - 4
Combine like terms:
y + [tex]\frac{12}{7}[/tex]x = -[tex]\frac{16}{7}[/tex]