Respuesta :

Step-by-step explanation:

i)

Consider the exponential equation

[tex]y = a {e}^{bt} [/tex]

Now Substitute these points to get a and b value

(0,37000) , (1,20350)

[tex]37000 = a \times {e}^{b \times 0} [/tex]

[tex]37000 = a \times 1[/tex]

Hence a=37000

Now Substitute t=1

[tex]20350 = 37000 \times {e}^{b \times 1} [/tex]

[tex] \frac{20350}{37000} = {e}^{b} [/tex]

[tex]0.55 = {e}^{b} [/tex]

[tex]b = log_{e}(0.55) = - 0.5978[/tex]

b≈(-0.6)

[tex]y = 37000 {e}^{ - 0.6t} [/tex]

is the required equation

ii)

[tex]y = 37000 {e}^{ - 0.6 \times 0.4} [/tex]

[tex]y = 37000 {e}^{ - 0.24} [/tex]

iii) it decreases by a factor of

[tex] {e}^{0.6} [/tex]

every decade

So the factor by which the price of car decreases every year is

[tex] {e}^{ \frac{0.6}{10} } [/tex]

as 1year =1/10 decade

Hence the required factor

[tex] {e}^{0.06} [/tex]

I hope it helped you