Respuesta :

Answer:

x = -1.8

Step-by-step explanation:

Given equation:

[tex]-\dfrac{2}{9} x = \dfrac{2}{5}[/tex]

Part I: Cancel the numerators in the equation (a/d = a/f ⇔ 1/d = 1/f)

[tex]\implies -\dfrac{2}{9} x = \dfrac{2}{5}[/tex]

[tex]\implies -\dfrac{1}{9} x = \dfrac{1}{5}[/tex]

Part II: Use cross multiplication (a/b = c/d ⇔ a × d = b × c) and simplify:

[tex]\implies -\dfrac{1}{9} x = \dfrac{1}{5}[/tex]

[tex]\implies -({x \times 5) = {1 \times 9}[/tex]

[tex]\implies -5x = 9[/tex]

Part III: Divide -5 to both sides of the equation:

[tex]\implies\dfrac{-5x }{-5} = \dfrac{9}{-5}[/tex]

[tex]\implies \boxed{x= \dfrac{9}{-5} = \dfrac{-9}{5} = -1.8}[/tex]

Therefore, the solution is [tex]x = -1.8[/tex].

Answer:

[tex] x = -\dfrac{9}{5} [/tex]

Step-by-step explanation:

[tex] -\dfrac{2}{9}x = \dfrac{2}{5} [/tex]

Multiply both sides by the reciprocal of -2/9 which is -9/2.

[tex] -\dfrac{9}{2} \times (-\dfrac{2}{9})x = -\dfrac{9}{2} \times \dfrac{2}{5} [/tex]

[tex] x = -\dfrac{18}{10} [/tex]

[tex] x = -\dfrac{9}{5} [/tex]