Respuesta :
Answer:
x = -1.8
Step-by-step explanation:
Given equation:
[tex]-\dfrac{2}{9} x = \dfrac{2}{5}[/tex]
Part I: Cancel the numerators in the equation (a/d = a/f ⇔ 1/d = 1/f)
[tex]\implies -\dfrac{2}{9} x = \dfrac{2}{5}[/tex]
[tex]\implies -\dfrac{1}{9} x = \dfrac{1}{5}[/tex]
Part II: Use cross multiplication (a/b = c/d ⇔ a × d = b × c) and simplify:
[tex]\implies -\dfrac{1}{9} x = \dfrac{1}{5}[/tex]
[tex]\implies -({x \times 5) = {1 \times 9}[/tex]
[tex]\implies -5x = 9[/tex]
Part III: Divide -5 to both sides of the equation:
[tex]\implies\dfrac{-5x }{-5} = \dfrac{9}{-5}[/tex]
[tex]\implies \boxed{x= \dfrac{9}{-5} = \dfrac{-9}{5} = -1.8}[/tex]
Therefore, the solution is [tex]x = -1.8[/tex].
Answer:
[tex] x = -\dfrac{9}{5} [/tex]
Step-by-step explanation:
[tex] -\dfrac{2}{9}x = \dfrac{2}{5} [/tex]
Multiply both sides by the reciprocal of -2/9 which is -9/2.
[tex] -\dfrac{9}{2} \times (-\dfrac{2}{9})x = -\dfrac{9}{2} \times \dfrac{2}{5} [/tex]
[tex] x = -\dfrac{18}{10} [/tex]
[tex] x = -\dfrac{9}{5} [/tex]