Respuesta :

Answer:

[tex]f(x) = 9 * (\frac13)^x[/tex]

Step-by-step explanation:

Hello!

Let's break down the formula [tex]f(x) = a*b^x[/tex]

  • [tex]a = \text{starting value, when x = 0}[/tex]
  • [tex]b = \text{multiplier}[/tex]
  • [tex]x = \text{Number of times multiplied}[/tex]

Looking at the graph, we can see that  [tex]a = 9[/tex], as it is when x is 0, and is the starting point.

To solve for the multiplier ([tex]b[/tex]):

  • divide the next term by the prevoius term

Multiplier:

  • When x = 0, the value is 9
  • When x = 1, the value is 3
  • 3/9 = 1/3
  • The multipler is 1/3

So, plug in the values:

  • [tex]f(x) = a*b^x[/tex]
  • [tex]a = 9, b = \frac13[/tex]
  • [tex]f(x) = 9 * (\frac13)^x[/tex]

The equation in [tex]f(x) = a*b^x[/tex] form is [tex]f(x) = 9 * (\frac13)^x[/tex].