Respuesta :
[tex]\rule{50}{1}\large\blue\textsf{\textbf{\underline{Question:-}}}\rule{50}{1}[/tex]
Find the slope of the line that goes through (2, 8) and (4, 6)
[tex]\rule{50}{1}\large\blue\textsf{\textbf{\underline{Answer and how to solve:-}}}\rule{50}{1}[/tex]
The slope formula will help us find the slope, Here it is:-
[tex]\Large\text{$\displaystyle\frac{y_2-y_1}{x_2-x_1}$}[/tex]
Now, replace y2 with 6, y1 with 8, x2 with 4, and x1 with 2:-
[tex]\Large\text{$\displaystyle\frac{6-8}{4-2}$}[/tex]
Simplifying,
[tex]\Large\text{$\displaystyle\frac{-2}{2}$}[/tex]
Simplifying further,
[tex]\hookrightarrow\underline{\boxed{\sf{Slope=-1}}}[/tex]
Good luck with your studies.
#TogetherWeGoFar
[tex]\rule{300}{1}[/tex]
Answer:
[tex]\sf \boxed{-1} \ \ is \ the \ slope[/tex]
Explanation:
[tex]\sf slope: \dfrac{y_2 - y_1}{x_2- x_1} \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points[/tex]
Here given points: A(2,8) and B(4,6)
Find slope (m):
[tex]\sf \rightarrow \dfrac{6-8}{4-2}[/tex]
simplify
[tex]\sf \rightarrow -1[/tex]
Additional
To find equation:
[tex]\sf y-y_1 = m(x-x_1)[/tex]
[tex]\rightarrow y-8 = -1(x-2)[/tex]
[tex]\rightarrow y = -x+2+8[/tex]
[tex]\rightarrow y = -x+10[/tex]