Respuesta :

Answer:

B) 41.7

Step-by-step explanation:

Let [tex]a=25[/tex], [tex]b=32[/tex], and [tex]c=37[/tex]. Use the Law of Cosines equation to find angle A=x which is directly across from side [tex]a[/tex]:

[tex]\displaystyle \cos(A)=\frac{b^2+c^2-a^2}{2bc}\\ \\\cos(A)=\frac{32^2+37^2-25^2}{2(32)(37)}\\ \\\cos(A)=\frac{1024+1369-625}{2(1184)}\\\\\cos(A)=\frac{2393-625}{2368}\\ \\\cos(A)=\frac{1768}{2368}\\\\A=\cos^{-1}\biggr(\frac{1768}{2368}\biggr)\\ \\A\approx41.7^\circ[/tex]

Therefore, the correct answer is option B, which means you were right!