Respuesta :

Xerxis

Answer :

[tex]\boxed{D) \sqrt{119} \: cm}[/tex]

Solution :

In the above figure, the line that is drawn from the centre of the given circle to the targent PQ is perpendicular to PQ.

And So, OP PQ

Using Pythagoras theorem in triangle ΔOPQ we get ,

[tex]\Longrightarrow\: OQ^2 = OP^2 + PQ^2[/tex]

[tex] \: \: \: \: \: \: \: \: \: \: \: \: [/tex]

[tex]\Longrightarrow\: (12)^2 = 5^2+PQ^2[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]

[tex]\Longrightarrow\: PQ^2 = 144-25[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]

[tex]\Longrightarrow\: PQ^2 = 119[/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]

[tex]\Longrightarrow\: PQ = \sqrt{119} [/tex]

[tex]\: \: \: \: \: \: \: \: \: \: \: \: [/tex]

So, option D) √119 cm is the length of PQ.

Ver imagen Xerxis