Respuesta :
Hey ! there
Answer:
Solution of equation or we can say that value of
- x = 6
- y = 1
Step-by-step explanation:
In this question we are given with two equations that are ,
- two equations that are ,x + y = 7
- two equations that are ,x + y = 7x - y = 5
And we are asked to find the solution of equation with the help of substitution method .
SOLUTION : -
Firstly we are giving numbering to the equation so that there's ease in solving . So ,
- x + y = 7 ----------- ( Equation 1 )
- x - y = 5 ----------- ( Equation 2 )
We can see that Equation 2 is smaller than Equation 1 . So we are using Equation 2 to find the value of x .
Finding value of x from Equation 2 :
- [tex] \rm{x - y = 5}[/tex]
Adding y on both sides :
- [tex]\rm{x - \cancel{y }+ \cancel{ y }= 5 + y} [/tex]
We get :
- [tex] \underline{ \boxed{ \rm{x = 5 + y}}} - - - - (\rm{Equation \: 3})[/tex]
Therefore , value of x is 5 + y .
Now substituting value of x as 5 + y in Equation 1 in order to find the value of y. So ,
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{ x + y = 7}[/tex]
Step 1 : Substituting value of x :
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{ \bold{5 + y} + y = 7}[/tex]
Step 2 : Adding like terms that are y and y :
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{5 + 2y = 7}[/tex]
Step 3 : Subtracting 5 on both sides :
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{ \cancel{5} + 2y - \cancel{5} = 7 - 5}[/tex]
We get ,
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{2y = 2}[/tex]
Step 4 : Dividing both sides with 2 :
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{ \dfrac{ \cancel{2}y}{ \cancel{2}} = \cancel{ \dfrac{2}{2} }}[/tex]
On simplifying, We get :
[tex] \: \quad \: \longmapsto \: \qquad \: \blue{ \underline{\boxed{ \frak{y = 1}}}} \quad \bigstar[/tex]
- Henceforth , value of y is ❝ 2 ❞
Now finding value of x from Equation 3 :
For finding value of x we are substituting value of y in Equation 3 . So ,
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{x = 5 + y}[/tex]
Substituting value of y :
[tex] \: \quad \: \longmapsto \: \qquad \: \rm{x = 5 + 1}[/tex]
Adding 5 with 1 , We get :
[tex] \: \quad \: \longmapsto \: \qquad \: \blue{\underline{\boxed{\frak{x = 6}}}} \quad \bigstar[/tex]
- Henceforth , value of x is ❝ 6 ❞
From values of x as 6 and y as 1 we can say that they are the solution of given equations .
Verifying : -
Now we are checking our answer whether it is wrong or right .
Equation 1 : x + y = 7
Substituting value of x and y in Equation 1 :
- 6 + 1 = 7
- 7 = 7
- L.H.S = R.H.S
- Hence, Verified.
Therefore, our answer is correct .
Equation 2 : x - y = 1
- 6 - 1 = 5
- 5 = 5
- L.H.S = R.H.S
- Hence , Verified .
Therefore , our answer is correct .
#Keep Learning
Topic : Linear equations in two variables
[tex] \: [/tex]
Given Equations,
- x + y = 7 ----- (i)
- x - y = 5 ----- (ii)
[tex] \: [/tex]
Solution,
First of all, let us take the first equation,
[tex] \\ \longrightarrow \qquad{ {{ \sf{ x + y} = 7 \: \:}}} \\ \\ \: \:[/tex]
Subracting y from both sides we get :
[tex] \\ \longrightarrow \qquad{ {{ \sf{ x + y - y} = 7 - y \: \:}}} \\ \: \:[/tex]
[tex] \longrightarrow \qquad{ {{ \sf{ x } = 7 - y \: \:}}} \\ \\ \: \:[/tex]
Now, Substituting the value of x in Equation (ii) :
[tex] \\ \longrightarrow \qquad{ {{ \sf{ x-y=5 \: \:}}}} \\ \: \:[/tex]
[tex]\longrightarrow \qquad{ {{ \sf{ (7 - y)-y=5 \: \:}}}} \\ \: \:[/tex]
[tex]\longrightarrow \qquad{ {{ \sf{ 7 - 2y=5 \: \:}}}} \\ \\ \: \:[/tex]
Now, Subtracting 7 from both sides :
[tex] \\ \longrightarrow \qquad{ {{ \sf{ 7 - 2y - 7=5 - 7 \: \:}}}} \\ \: \:[/tex]
[tex]\longrightarrow \qquad{ {{ \sf{ - 2y = - 2\: \:}}}} \\ \\ \: \:[/tex]
Dividing both sides by -2 we get :
[tex] \\ \longrightarrow \qquad{ {{ \sf{ \frac{ - 2y}{ - 2} = \frac{ - 2}{ - 2} \: \:}}}} \\ \: \:[/tex]
[tex] \longrightarrow \qquad{ \underline{\boxed{ \pmb{ \mathfrak{y = \: \: 1}}}}} \: \bigstar\\ \:
[/tex]
- Therefore, The value of y is 1
Now, Substituting the value of y in Equation (i) :
[tex] \\ \longrightarrow \qquad{ {{ \sf{ x+y=7 \: \:}}}} \\ \: \:[/tex]
[tex]\longrightarrow \qquad{ {{ \sf{ x+1=7 \: \:}}}} \\ \\ \: \:[/tex]
Subracting 1 from both sides we get :
[tex] \\ \longrightarrow \qquad{ {{ \sf{ x+1 - 1=7 - 1\: \:}}}} \\ \: \:[/tex]
[tex] \longrightarrow \qquad{ \underline {\boxed{ \pmb{ \mathfrak{x = \: \: 6}}}}} \: \: \bigstar\\ \: [/tex]
- Therefore, The value of x is 16