Respuesta :

Answer:

BC = 6 units

Given following:

  • AC = 4 units
  • tan(A) = 3/2

Solve for BC:

Formula:

[tex]\rightarrow \sf tan(A) =\dfrac{opposite}{adjacent}[/tex]

insert values and make them proportional

[tex]\rightarrow \sf tan(A) =\dfrac{BC}{AC} = \dfrac{3}{2} = \dfrac{6}{4}[/tex]

So, BC is 6 units.

Answer:

1)  BC = 6

2)  B = 33.7°  (nearest tenth)

3)  [tex]\sf AB=2\sqrt{13}[/tex]

Step-by-step explanation:

Trigonometric ratios

[tex]\sf \sin(\theta)=\dfrac{O}{H}\quad\cos(\theta)=\dfrac{A}{H}\quad\tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle
  • H is the hypotenuse (the side opposite the right angle)

Question 1

Given:

  • Angle = A
  • Side opposite angle = BC
  • Side adjacent angle = AC = 4

Substituting the values into the tan ratio:

[tex]\implies \sf \tan A=\dfrac{BC}{AC}=\dfrac{BC}{4}[/tex]


Given:

[tex]\sf \tan A=\dfrac{3}{2}[/tex]

Therefore:

[tex]\implies \tan \sf A = \tan \sf A[/tex]

[tex]\implies \sf \dfrac{BC}{4}=\dfrac{3}{2}[/tex]

[tex]\implies \sf BC=\dfrac{4 \cdot 3}{2}=6[/tex]

Question 2

Given:

  • Angle = B
  • Side opposite angle = AC = 4
  • Side adjacent angle = BC = 6

Substituting the values into the tan ratio and solving for B:

[tex]\implies \sf \tan B=\dfrac{AC}{BC}[/tex]

[tex]\implies \sf \tan B=\dfrac{4}{6}[/tex]

[tex]\implies \sf B=\tan ^{-1}\left(\dfrac{4}{6}\right)[/tex]

[tex]\implies \sf B=33.69006753...^{\circ}[/tex]

[tex]\implies \sf B=33.7^{\circ}\:(nearest\:tenth)[/tex]

Question 3

Pythagoras’ Theorem

[tex]a^2+b^2=c^2[/tex]

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

Given:

  • a = AC = 4
  • b = BC = 6
  • c = AB

Substituting the values into the formula and solving for AB:

[tex]\implies \sf AC^2+BC^2=AB^2[/tex]

[tex]\implies \sf 4^2+6^2=AB^2[/tex]

[tex]\implies \sf 16+36=AB^2[/tex]

[tex]\implies \sf AB^2=52[/tex]

[tex]\implies \sf AB=\sqrt{52}[/tex]

[tex]\implies \sf AB=2\sqrt{13}[/tex]