Respuesta :
[tex]\rule{50}{1}\large\blue\textsf{\textbf{\underline{Question:-}}}\rule{50}{1}[/tex]
What is the slope of the line through (-5, 13) and (2, -1) ?
[tex]\rule{50}{1}\large\blue\textsf{\textbf{\underline{Answer and how to solve:-}}}\rule{50}{1}[/tex]
We can use the slope formula :-
[tex]\Large\text{$\displaystyle\frac{y_2-y_1}{x_2-x_1}$}[/tex]
Now , We replace letters with numbers ,
[tex]\Large\text{$\displaystyle\frac{-1-13}{2-(-5)}$}[/tex]
On simplification,
[tex]\Large\text{$\displaystyle\frac{-14}{2+5}$}[/tex]
On further simplification ,
[tex]\Large\text{$\displaystyle\frac{-14}{7}$}[/tex]
[tex]\diamond[/tex] Finally, We get
[tex]\longmapsto\sf\underline{\boxed{\tt{slope=-2}}}[/tex]
Good luck with your studies.
#TogetherWeGoFar
[tex]\rule{300}{1}[/tex]
The slope of the line joining the points (a,b) and (c,d) is given by
- [tex]{\boxed{\bf{Slope(m)=\dfrac{d-b}{c-a}}}}[/tex]
Putting the values, we have:
[tex]{:\implies \quad \sf m=\dfrac{-1-13}{2-(-5)}}[/tex]
[tex]{:\implies \quad \sf m=\dfrac{-14}{2+5}}[/tex]
[tex]{:\implies \quad \sf m=\dfrac{-14}{7}=\boxed{\bf{-2}}}[/tex]