Respuesta :

          [tex]\rule{50}{1}\large\blue\textsf{\textbf{\underline{Question:-}}}\rule{50}{1}[/tex]

       What is the slope of the line through (-5, 13) and (2, -1) ?

  [tex]\rule{50}{1}\large\blue\textsf{\textbf{\underline{Answer and how to solve:-}}}\rule{50}{1}[/tex]

We can use the slope formula :-

[tex]\Large\text{$\displaystyle\frac{y_2-y_1}{x_2-x_1}$}[/tex]

Now , We replace letters with numbers ,

[tex]\Large\text{$\displaystyle\frac{-1-13}{2-(-5)}$}[/tex]

On simplification,

[tex]\Large\text{$\displaystyle\frac{-14}{2+5}$}[/tex]

On further simplification ,

[tex]\Large\text{$\displaystyle\frac{-14}{7}$}[/tex]

[tex]\diamond[/tex] Finally, We get

[tex]\longmapsto\sf\underline{\boxed{\tt{slope=-2}}}[/tex]

Good luck with your studies.

#TogetherWeGoFar

[tex]\rule{300}{1}[/tex]

The slope of the line joining the points (a,b) and (c,d) is given by

  • [tex]{\boxed{\bf{Slope(m)=\dfrac{d-b}{c-a}}}}[/tex]

Putting the values, we have:

[tex]{:\implies \quad \sf m=\dfrac{-1-13}{2-(-5)}}[/tex]

[tex]{:\implies \quad \sf m=\dfrac{-14}{2+5}}[/tex]

[tex]{:\implies \quad \sf m=\dfrac{-14}{7}=\boxed{\bf{-2}}}[/tex]