(50 POINTS) What is the length of YZ in Triangle XYZ? Explain two different methods that could be used to find this length.

Using cosine rule:
[tex]\rightarrow \sf cos(30 ) = \dfrac{YZ}{12}[/tex]
[tex]\rightarrow \sf YZ = 12cos(30 )[/tex]
[tex]\rightarrow \sf YZ = 6\sqrt{3}[/tex]
[tex]\rightarrow \sf YZ = 10.4[/tex]
First find XY using sine rule:
[tex]\rightarrow \sf sin(30)=\dfrac{XY}{12}[/tex]
[tex]\rightarrow \sf XY = 12sin(30)[/tex]
[tex]\rightarrow \sf XY =6[/tex]
Then use Pythagoras Theorem:
⇒ XY² + YZ² = XZ²
⇒ (6)² + YZ² = 12²
⇒ YZ² = 144 - 36
⇒ YZ = √108
⇒ YZ = 6√3
⇒ YZ = 10.4