Answer:
(b) [tex]\displaystyle \int {\frac{\sec x \tan x}{1 + \sec^2 x}} \, dx = \arctan \big( \sec x \big) + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
Integration Method: U-Substitution and U-Solve
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \int {\frac{\sec x \tan x}{1 + \sec^2 x}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for u-substitution.
- Set u:
[tex]\displaystyle u = \sec x[/tex] - [u] Apply Trigonometric Differentiation:
[tex]\displaystyle du = \sec x \tan x \ dx[/tex] - [du] Rewrite [U-Solve]:
[tex]\displaystyle dx = \cos x \cot x \ du[/tex]
Step 3: Integrate Pt. 2
- [Integral] Apply Integration Method [U-Solve]:
[tex]\displaystyle \begin{aligned}\int {\frac{\sec x \tan x}{1 + \sec^2 x}} \, dx & = \int {\frac{\sec x \tan x \cos x \cot x}{u^2 + 1}} \, du \leftarrow \\\end{aligned}[/tex] - [Integrand] Simplify:
[tex]\displaystyle \begin{aligned}\int {\frac{\sec x \tan x}{1 + \sec^2 x}} \, dx & = \int {\frac{\sec x \tan x \cos x \cot x}{u^2 + 1}} \, du \\& = \int {\frac{1}{u^2 + 1}} \, du \leftarrow \\\end{aligned}[/tex] - [Integral] Apply Arctrigonemtric Integration:
[tex]\displaystyle \begin{aligned}\int {\frac{\sec x \tan x}{1 + \sec^2 x}} \, dx & = \int {\frac{\sec x \tan x \cos x \cot x}{u^2 + 1}} \, du \\& = \int {\frac{1}{u^2 + 1}} \, du \\& = \frac{1}{1} \arctan \bigg( \frac{u}{1} \bigg) + C \leftarrow \\\end{aligned}[/tex] - Simplify:
[tex]\displaystyle \begin{aligned}\int {\frac{\sec x \tan x}{1 + \sec^2 x}} \, dx & = \int {\frac{\sec x \tan x \cos x \cot x}{u^2 + 1}} \, du \\& = \int {\frac{1}{u^2 + 1}} \, du \\& = \frac{1}{1} \arctan \bigg( \frac{u}{1} \bigg) + C \\& = \arctan u + C \leftarrow \\\end{aligned}[/tex] - [u] Back-substitute:
[tex]\displaystyle \begin{aligned}\int {\frac{\sec x \tan x}{1 + \sec^2 x}} \, dx & = \int {\frac{\sec x \tan x \cos x \cot x}{u^2 + 1}} \, du \\& = \int {\frac{1}{u^2 + 1}} \, du \\& = \frac{1}{1} \arctan \bigg( \frac{u}{1} \bigg) + C \\& = \arctan u + C \\& = \boxed{ \arctan \big( \sec x \big) + C } \\\end{aligned}[/tex]
∴ we used substitution to find the indefinite integral.
---
Learn more about integration: https://brainly.com/question/27746468
Learn more about Calculus: https://brainly.com/question/27746481
---
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration