The perimeter of a rectanWhich of the following expressions are equivalent to 8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8

5

4



+(3

10

2



−1

5

1



)8, start fraction, 4, divided by, 5, end fraction, plus, left parenthesis, 3, start fraction, 2, divided by, 10, end fraction, minus, 1, start fraction, 1, divided by, 5, end fraction, right parenthesis?gle is 343434 units. Its width is 6.56.56, point, 5 units.

Respuesta :

The expression [tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex] contains mixed numbers, and the equivalent expression of [tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex] is [tex]\dfrac{124}{5}[/tex]

How to determine the equivalent expression?

The expression is given as:

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex]

Rewrite the fractions as improper numbers

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \left(\dfrac{32}{10} - \dfrac{6}{5}\right)8[/tex]

Express 6/5 as 12/10

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \left(\dfrac{32}{10} - \dfrac{12}{10}\right)8[/tex]

Solve the expression in the bracket

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \left(2 \right)8[/tex]

Open the bracket

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + 16[/tex]

Express 16 as 80/5

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \dfrac{80}{5}[/tex]

Add the fractions

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{124}{5}[/tex]

Express as mixed numbers

[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =24\dfrac{4}{5}[/tex]

Hence, the equivalent expression of [tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex] is [tex]\dfrac{124}{5}[/tex]

Read more about equivalent expression at:

https://brainly.com/question/723406

#SPJ1