Respuesta :
The expression [tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex] contains mixed numbers, and the equivalent expression of [tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex] is [tex]\dfrac{124}{5}[/tex]
How to determine the equivalent expression?
The expression is given as:
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex]
Rewrite the fractions as improper numbers
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \left(\dfrac{32}{10} - \dfrac{6}{5}\right)8[/tex]
Express 6/5 as 12/10
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \left(\dfrac{32}{10} - \dfrac{12}{10}\right)8[/tex]
Solve the expression in the bracket
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \left(2 \right)8[/tex]
Open the bracket
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + 16[/tex]
Express 16 as 80/5
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{44}{5} + \dfrac{80}{5}[/tex]
Add the fractions
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =\dfrac{124}{5}[/tex]
Express as mixed numbers
[tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8 =24\dfrac{4}{5}[/tex]
Hence, the equivalent expression of [tex]8\dfrac{4}{5} + \left(3\dfrac{2}{10} - 1\dfrac{1}{5}\right)8[/tex] is [tex]\dfrac{124}{5}[/tex]
Read more about equivalent expression at:
https://brainly.com/question/723406
#SPJ1