Respuesta :
As the ray of light moves parallel to the base line of the prism inside it, so angle of refraction = r = 30° (equilateral prism)
Now, we know that:
[tex]{:\implies \quad \sf \sin (i)=\mu \sin (r)}[/tex]
[tex]{:\implies \quad \sf \sin (i)=\sqrt{3}\sin (30^{\degree})}[/tex]
[tex]{:\implies \quad \sf \sin (i)=\dfrac{\sqrt{3}}{2}}[/tex]
[tex]{:\implies \quad \sf \sin (i)=\sin (60^{\degree})}[/tex]
Therefore, angle of incidence is 60°
Given ,
[tex]r = \sqrt{3}[/tex]
Now ,
[tex] \longrightarrow \sin(i) = \sqrt{3} \: \sin(30°)[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex]\longrightarrow \sin(i)= \sqrt{ \frac{3}{2} }[/tex]
[tex] \: \: \: \: \: \: \: \: \: \: \: \: [/tex]
[tex] \longrightarrow \: i = 60°[/tex]
The angle of incidence is 60°.