Respuesta :

Answer:

  0, for q ≠ 0 and q ≠ 1

Step-by-step explanation:

Assuming q ≠ 0, you want to find the value of x such that ...

  q^x = 1

This is solved using logarithms.

__

  x·log(q) = log(1) = 0

The zero product rule tells us this will have two solutions:

  x = 0

  log(q) = 0   ⇒   q = 1

If q is not 0 or 1, then its value is 1 when raised to the 0 power. If q is 1, then its value will be 1 when raised to any power.

_____

Additional comment

The applicable rule of logarithms is ...

  log(a^b) = b·log(a)