Respuesta :

Answer:

3. 670.3 °C

4. 807.5 torr

Explanation:

Solving :

Q3

  • V₁/T₁ = V₂/T₂
  • 3 / 283 = 10 / T₂
  • T₂ = 2830/3
  • T₂ = 943.3 K
  • T₂ = 670.3 °C

Q4

  • P₁/T₁ = P₂/T₂
  • 760/300 = P₂/323
  • P₂ = 760/300 x 323
  • P₂ = 2.5 x 323
  • P₂ = 807.5 torr

Answer:

3)  670.7 °C (nearest tenth)

4)  818.2 torr (nearest tenth)

Explanation:

Question 3

Charles's Law

[tex]\sf \dfrac{V_1}{T_1}=\dfrac{V_2}{T_2}\quad \textsf{(when pressure is constant and temperature is in kelvin)}[/tex]

where:

  • [tex]\sf V_1[/tex] = first volume
  • [tex]\sf V_2[/tex] = second volume
  • [tex]\sf T_1[/tex] = first temperature
  • [tex]\sf T_2[/tex] = second temperature

Given:

  • [tex]\sf V_1[/tex] = 3 L
  • [tex]\sf V_2[/tex] = 10 L
  • [tex]\sf T_1[/tex] = 10 °C

First convert Celsius to kelvin:

Kelvin = Celsius + 273.15

⇒ [tex]\sf T_1[/tex] = 10 + 273.15 = 283.15 K

Substituting the given values into the formula:

[tex]\implies \sf \dfrac{3}{10}=\dfrac{283.15}{T_2}[/tex]

[tex]\implies \sf 3T_2=283.15 \cdot 10[/tex]

[tex]\implies \sf T_2=\dfrac{2831.5}{3}[/tex]

[tex]\implies \sf T_2=943.83333...\:K[/tex]

Converting kelvins back to Celsius:

[tex]\implies \sf T_2=943.83333...-273.15=670.68333...\:C^{\circ}[/tex]

Therefore, the final temperature will be 670.7 °C (nearest tenth).

Question 4

Gay-Lussac's Law

[tex]\sf \dfrac{P_1}{T_1}=\dfrac{P_2}{T_2}\quad \textsf{(when volume is constant and temperature is in kelvin)}[/tex]

where:

  • [tex]\sf P_1[/tex] = first volume
  • [tex]\sf P_2[/tex] = second volume
  • [tex]\sf T_1[/tex] = first temperature
  • [tex]\sf T_2[/tex] = second temperature

Given:

  • [tex]\sf P_1[/tex] = 760 torr
  • [tex]\sf T_1[/tex] = 27 °C
  • [tex]\sf T_2[/tex] = 50 °C

First convert Celsius to kelvin:

kelvin = Celsius + 273.15

⇒ [tex]\sf T_1[/tex] = 27 + 273.15 = 300.15 K

⇒ [tex]\sf T_2[/tex] = 50 + 273.15 = 323.15 K

Substituting the given values into the formula:

[tex]\implies \sf \dfrac{760}{300.15}=\dfrac{P_2}{323.15}[/tex]

[tex]\implies \sf 760 \cdot 323.15=P_2 \cdot 300.15[/tex]

[tex]\implies \sf 245594=300.15\:P_2[/tex]

[tex]\implies \sf P_2=\dfrac{245594}{300.15}[/tex]

[tex]\implies \sf P_2=818.23754...\:torr[/tex]

Therefore, the new pressure is 818.2 torr (nearest tenth).