The factor of the polynomial 7a¹⁰- 112a² is 7a²(a²+2a+2)(a²-2a+2)(a²+2)(a²-2)
Polynomial is the combination of variables and constants systematically with "n" number of power in ascending or descending order.
[tex]\rm a_1x+a_2x^2+a_3x^3+a_4x^4..........a_nx^n[/tex]
We have:
[tex]\rm = 7a^1^0 - 112a^2[/tex]
[tex]\rm =7a^2\left(a^8-16\right)[/tex]
[tex]\rm =7a^2\left((a^4)^2-4^2\right)[/tex]
[tex]\rm =7a^2\left(a^4-4\right)(a^4+4)[/tex]
[tex]\rm =7a^2\left(a^2+2a+2\right)\left(a^2-2a+2\right)\left(a^2+2\right)\left(a^2-2\right)[/tex]
Thus, the factor of the polynomial 7a¹⁰- 112a² is 7a²(a²+2a+2)(a²-2a+2)(a²+2)(a²-2)
Learn more about Polynomial here:
brainly.com/question/17822016
#SPJ1