Respuesta :

subbhy
Hi,

See the working out on the piece of paper and don’t hesitate to ask any questions if confused!!

Ver imagen subbhy

Answer:

[tex]\textsf{P}=\left(-\dfrac{44}{7},-\dfrac{5}{7}\right)[/tex]

Step-by-step explanation:

Given:

  • A = (-11, 1)
  • B = (0, -3)
  • Ratio 3 : 4

Therefore, point P on the segment AB should be 3/7 of the way from point A.

[tex]x_P=\dfrac{3}{7}(x_B-x_A)+x_A=\dfrac{3}{7}(0-(-11))-11=\dfrac{-44}{7}[/tex]

[tex]y_P=\dfrac{3}{7}(y_B-y_A)+y_A=\dfrac{3}{7}(-3-1)+1=-\dfrac{5}{7}[/tex]

[tex]\implies \textsf{P}=\left(-\dfrac{44}{7},-\dfrac{5}{7}\right)[/tex]

or P = (-6.3, -0.7) to 1 decimal place

(Please see attached image, where the segment AB has been divided into 7 equal parts.)

Ver imagen semsee45