The amplitude of vibration for the sphere will be 29.48 nm.
The distance between from the crest of a wave to the next crest is known as the amplitude.
The amplitude of the sphere is;
[tex]\rm A= \frac{\delta_0}{[1-(\frac{\omega}{\omega_n}^2]} \\\\[/tex]
The stiffness of the load is;
[tex]\rm K = \frac{F}{\triangle y }\\\\ K=\frac{18}{0.014} \\\\ K=1285.71 \ N/m[/tex]
The natural frequency is;
[tex]\rm \omega_n= \sqrt{\frac{k}{m}} \\\\ \rm \omega_n= \sqrt{\frac{1285.71}{4}} \\\\ \omega_n=17.93 \ rad/sec[/tex]
Put the obtained values in the amplitude formula;
[tex]\rm A= \frac{0.015}{[1-(\frac{4 \pi}{17.93}^2]} \\\\ A= 0.02948 \\\\ A= 29.48 \ nm[/tex]
Hence,the amplitude of vibration for the sphere will be 29.48 nm.
To learn more about the amplitude, refer:
https://brainly.com/question/8662436
#SPJ1