Respuesta :

  • y=(4/3)(2)^x

Find some points

x=0

  • y=4/3×2⁰
  • y=4/3

x=1

  • y=4/3(2¹)
  • y=8/3

x=2

  • y=4/3(2²)
  • y=16/3

Graph attached

Ver imagen Аноним

Answer:

Given function:

[tex]g(x)=\dfrac{4}{3}(2)^x[/tex]

To find the y-intercept, input x = 0:

[tex]\implies g(0)=\dfrac{4}{3}(2)^0[/tex]

[tex]\implies g(0)=\dfrac{4}{3}\cdot 1[/tex]

[tex]\implies g(0)=\dfrac{4}{3}[/tex]

End behaviors:

[tex]\textsf{As }x \rightarrow \infty, g(x) \rightarrow \infty[/tex]

[tex]\textsf{As } x \rightarrow -\infty, 2^x \rightarrow 0 \implies \textsf{As }x \rightarrow -\infty, g(x) \rightarrow 0[/tex]

Therefore, y = 0 is an asymptote (the curve gets close to but never touches the x-axis).

To help graph accurately (rather than sketch), input other positive values of x as plot points for the curve:

[tex]\implies g(x)=\dfrac{4}{3}(2)^1=\dfrac{8}{3}[/tex]

[tex]\implies g(x)=\dfrac{4}{3}(2)^2=\dfrac{16}{3}[/tex]

[tex]\implies g(x)=\dfrac{4}{3}(2)^3=\dfrac{32}{3}[/tex]

Ver imagen semsee45