Respuesta :
Answer:
- 912
Step-by-step explanation:
Given the AP
- 3, 8, 13, 18, ...
We can see that
- The first term is a = 3
- The common difference is d = 5
The sum of the first n terms formula is
[tex]S_n=\cfrac{n}{2} [2a+(n-1)d][/tex]
Substitute the values and considering n = 19, find the sum
[tex]S_{19}=\cfrac{19}{2} [2*3+(19-1)*5]=\cfrac{19}{2} [6+90]=912[/tex]
Answer:
912
Step-by-step explanation:
Sum of the first n terms of an arithmetic series:
[tex]S_n=\dfrac12n[2a+(n-1)d][/tex]
where:
- n = nth term
- a = first term
- d = common difference
Given arithmetic series: 3 + 8 + 13 + 18 + ...
Therefore:
- a = 3
- d = 8 - 3 = 5
To find the sum of the first 19 terms, substitute the given values together with n = 19 into the Sum formula:
[tex]\implies S_{19}=\dfrac{1}{2}(19)\left[\:2(3)+5(19-1)\:\right][/tex]
[tex]\implies S_{19}=\dfrac{19}{2}\left[\:6+90\:\right][/tex]
[tex]\implies S_{19}=\dfrac{19}{2}\left[\:96\:\right][/tex]
[tex]\implies S_{19}=912[/tex]