cater81
contestada



Complete the Proof Statements Reasons given 3. Alternate Interior Angles Theorem AB = CD 2. כם 5. 6. 2 LD 6. Given: ABCD is a D parallelogram Prove: AE CE, DE BE ASA Triangle Congruence Theorem ABCD, AD|| CB Opposite sides of a are congruent ME - CE. DE BE ABCD is a parallelogram A E C CPCTC ZDCE ZBAE ZCDB=LIABD AABE ACDE Definition of Parallelogram​

Complete the Proof Statements Reasons given 3 Alternate Interior Angles Theorem AB CD 2 כם 5 6 2 LD 6 Given ABCD is a D parallelogram Prove AE CE DE BE ASA Tria class=

Respuesta :

Answer:

Step-by-step explanation:

1) [tex]ABCD[/tex] is a parallelogram (given)

2) [tex]\overline{AB} \parallel \overline{CD}, \overline{AD} \parallel \overline{CB}[/tex] (definition of parallelogram)

3) [tex]\angle DCE \cong \angle BAE, \angle CDB \cong \angle ABD[/tex] (Alternate interior angles theorem)

4) [tex]\overline{AB} \cong \overline{CD}[/tex] (opposite sides of a parallelogram are congruent)

5) [tex]\triangle ABE \cong \triangle CDE[/tex] (ASA Triangle Congruence theorem)

6) [tex]\overline{AE} \cong \overline{CE}, \overline{DE} \cong \overline{BE}[/tex] (CPCTC)