What is the factored form of 343 + x6? A. (7 − x)(49 + 7x + x2) B. (7 + x)(49 − 7x + x2) C. (7 − x2)(49 + 7x2 + x4) D. (7 + x2)(49 − 7x2 + x4)

Respuesta :

mb0089

Answer:

D. (7 + x2)(49 − 7x2 + x4)

Step-by-step explanation:

I had the same question and got it right!

Answer:

(x^2 + 7) (x^4 - 7 x^2 + 49)

Step-by-step explanation:

Factor the following:

x^6 + 343

Hint: | Express x^6 + 343 as a sum of cubes.

x^6 + 343 = (x^2)^3 + 7^3:

(x^2)^3 + 7^3

Hint: | Factor the sum of two cubes.

Factor the sum of two cubes. (x^2)^3 + 7^3 = (x^2 + 7) ((x^2)^2 - 7 x^2 + 7^2):

(x^2 + 7) ((x^2)^2 - 7 x^2 + 7^2)

Hint: | Evaluate 7^2.

7^2 = 49:

(x^2 + 7) ((x^2)^2 - 7 x^2 + 49)

Hint: | For all positive integer exponents (a^n)^m = a^(m n). Apply this to (x^2)^2.

Multiply exponents. (x^2)^2 = x^(2×2):

(x^2 + 7) (x^4 - 7 x^2 + 49)

Hint: | Multiply 2 and 2 together.

2×2 = 4:

Answer: (x^2 + 7) (x^4 - 7 x^2 + 49)