Respuesta :

Answer:

a. center (3,6) –> (h,k)

point (0,-2) –> (x,y)

(x-h)²+(y-k)²=r²

(0-3)²+(-2-6)²=r²

(-3)²+(-8)²=r²

9+64=r²

r²=73

(x-h)²+(y-k)²=r²

(x-3)²+(y-6)²=73

____o_o___

b. center (-4,-2) –> (h,k)

radius =9 –> r

(x-h)²+(y-k)²= r²

(x-(-4))²+ (y-(-2))²= 9²

(x+4)²+(y+2)²=81

____o_o___

c. (2,5) –> (x1 , y1)

(-10,7) –> (x2,y2)

[tex]( \frac{x1 + x2 }{2} , \frac{y1 + y2}{2} ) \\ \\ ( \frac{2 + ( - 10)}{2} ,\frac{5 + 7}{2} ) \\ \\ ( \frac{ - 8}{2} , \frac{12}{2} ) = ( - 4,6)[/tex]

center (-4,6) –> (h,k)

(2,5) –> (x, y)

[tex] {(x - h)}^{2} + (y - k)^{2} = {r}^{2} \\ (2 - ( - 4)) ^{2} + {(5 - 6)}^{2} = {r}^{2} \\ ({6})^{2} + {( - 1)}^{2} = {r}^{2} \\ 36 + 1 = {r}^{2} \\ {r}^{2} = 37[/tex]

[tex] {(x - h)}^{2} + {(y - k)}^{2} = {r}^{2} \\ (x - ( - 4)) ^{2} + {(y - 6)}^{2} = {r}^{2} \\ (x + 4)^{2} + {(y - 6)}^{2} = 37[/tex]

Answer:

See below for answers and explanations

Step-by-step explanation:

Problem A

The equation of a circle is [tex](x-h)^2+(y-k)^2=r^2[/tex] where [tex](h,k)[/tex] is the center and [tex]r[/tex] is the radius, thus, we need to find [tex]r^2[/tex] using our center and given point, through which we can find our equation:

[tex](x-h)^2+(y-k)^2=r^2\\\\(0-3)^2+(-2-6)^2=r^2\\\\(3)^2+(-8)^2=r^2\\\\9+64=r^2\\\\73=r^2[/tex]

This means that the correct equation is [tex](x-3)^2+(y-6)^2=73[/tex]

Problem B

[tex](x-h)^2+(y-k)^2=r^2\\\\(x-(-4))^2+(y-(-2))^2=9^2\\\\(x+4)^2+(y+2)^2=81[/tex]

Thus, the correct equation is [tex](x+4)^2+(y+2)^2=81[/tex]

Problem C

Use the distance formula where [tex](x_1,y_1)\rightarrow(2,5)[/tex] and [tex](x_2,y_2)\rightarrow(-10,7)[/tex] to find the diameter of the circle with the given endpoints:

[tex]d=\sqrt{(y_2-y_1)^2+(x_2-x_1)^2}\\\\d=\sqrt{(7-5)^2+(-10-2)^2}\\\\d=\sqrt{(2)^2+(-12)^2}\\\\d=\sqrt{4+144}\\\\d=\sqrt{148}\\\\d=2\sqrt{37}[/tex]

Since the radius is half the diameter, then [tex]r=\sqrt{37}[/tex], making [tex]r^2=37[/tex].

The midpoint of the two endpoints will give us the center, so the center is [tex]\displaystyle \biggr(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\biggr)=\biggr(\frac{2+(-10)}{2},\frac{5+7}{2}\biggr)=\biggr(\frac{-8}{2},\frac{12}{2}\biggr)=(-4,6)[/tex]

Thus, the correct equation is [tex](x-h)^2+(y-k)^2=r^2\rightarrow(x-(-4))^2+(y-6)^2=37\rightarrow(x+4)^2+(y-6)^2=37[/tex]