NO LINKS!! Find the indicated measure for each circle shown. Round answers to the nearest tenth.

Problem 13
x = central angle = 360-105 = 255 degrees
r = 8 = radius
A = sector area
A = (x/360)*pi*r^2
A = (255/360)*pi*8^2
A = 142.41887
I used the calculator's stored value of pi to get the most accuracy possible.
Round that decimal value however you need to. The same applies to the other questions as well.
========================================================
Problem 14
x = central angle = 114 degrees
r = radius = unknown
A = sector area = 36 square cm
A = (x/360)*pi*r^2
36 = (114/360)*pi*r^2
36*(360/114) = pi*r^2
113.68421 = pi*r^2
r^2 = 113.68421/pi
r^2 = 36.18681
r = sqrt(36.18681)
r = 6.015547
========================================================
Problem 15
x = area of the full circle
The pizza slice shown has an area of 49 square meters.
This is 68/360 of a full circle, which means,
sector area = (68/360)*(full circle area)
49 = (68/360)*x
x = 49*(360/68)
x = 259.41176
Answer:
13) 142.4 in²
14) 6.0 cm
15) 259.4 m²
Step-by-step explanation:
Formula
[tex]\textsf{Area of a sector of a circle}=\left(\dfrac{\theta}{360^{\circ}}\right) \pi r^2[/tex]
(where r is the radius and [tex]\theta[/tex] is in degrees)
Given:
Substitute the given values into the formula and solve for A:
[tex]\implies \textsf{Area}=\left(\dfrac{255^{\circ}}{360^{\circ}}\right) \pi 8^2[/tex]
[tex]\implies \textsf{Area}=\dfrac{136}{3} \pi[/tex]
[tex]\implies \boxed{\textsf{Area}=142.4\: \sf in^2 \:(nearest\:tenth)}[/tex]
Given:
Substitute the given values into the formula and solve for r:
[tex]\implies 36=\left(\dfrac{114^{\circ}}{360^{\circ}}\right) \pi r^2[/tex]
[tex]\implies \dfrac{36 \cdot 360}{114 \pi}=r^2[/tex]
[tex]\implies r^2=\dfrac{2160}{19 \pi}[/tex]
[tex]\implies r=\sqrt{\dfrac{2160}{19 \pi}}[/tex]
[tex]\implies \boxed{r=6.0\: \sf cm\:(nearest\:tenth)}[/tex]
Given:
Substitute the given values into the formula and solve for r²:
[tex]\implies 49=\left(\dfrac{68^{\circ}}{360^{\circ}}\right) \pi r^2[/tex]
[tex]\implies \dfrac{49 \cdot 360}{68 \pi}= r^2[/tex]
[tex]\implies r^2=\dfrac{4410}{17 \pi}[/tex]
[tex]\textsf{Area of a circle} = \pi r^2[/tex]
[tex]\implies \textsf{Area of a circle N} =\dfrac{4410}{17 \pi} \cdot \pi[/tex]
[tex]\implies \textsf{Area of a circle N} =\dfrac{4410}{17}[/tex]
[tex]\implies \boxed{\textsf{Area of a circle N} =259.4\: \sf m^2\:(nearest\:tenth)}[/tex]