Respuesta :

Used graphing calculator=Desmos

  • f(x)=4/x
  • g(x)=9/x-2

Graph attached

for f(x)=g(x)

Solution is

  • (-1.6,-2.5)
Ver imagen Аноним

Answer:

D)   (-1.6, -2.5)

Step-by-step explanation:

Please see attached for the graphing of the two functions.  

The solution is the point where the two curves intersect.

From inspection of the graph, the solution is (-1.6, -2.5)

Proof

Given functions:

[tex]f(x)=\dfrac{4}{x}[/tex]

[tex]g(x)=\dfrac{9}{x-2}[/tex]

To find the solution:

[tex]\implies f(x)=g(x)[/tex]

[tex]\implies \dfrac{4}{x}=\dfrac{9}{x-2}[/tex]

Cross multiply:

[tex]\implies 4(x-2)=9x[/tex]

Expand:

[tex]\implies 4x-8=9x[/tex]

Simplify:

[tex]\implies -5x=8[/tex]

[tex]\implies x=-\dfrac{8}{5}=-1.6[/tex]

Inputting the found value of x into one of the equations and solving for y:

[tex]\implies f(-1.6)=\dfrac{4}{-1.6}=-2.5[/tex]

Therefore, the solution to f(x) = g(x) is (-1.6, -2.5) thus proving the graphed solution.

Ver imagen semsee45