[tex]{\large{\red{\mapsto{\maltese{\underline{\green{\boxed{\blue{\underbrace{\overbrace{\pink{\pmb{\bf{Question:}}}}}}}}}}}}}}[/tex]


Factorise using difference of squares method
[tex] \mathsf \blue{2 {a}^{2} - 32}[/tex]

Respuesta :

Solution:

[tex]2(a + 4)(a - 4)[/tex]

Step-by-step explanations:

• Factorize the expression ( 2a² - 32 ). First, which will give us:

[tex]2( {a}^{2} - 16)[/tex]

• But ( a² - 16 ) is a perfect square expression. Therefore it can further be factorized to:

[tex]( {a}^{2} - 16)[/tex]

[tex] = (a - 16) ^{2} [/tex]

[tex] = (a - 4)(a + 4)[/tex]

• Hence joining all them will sum up to..:

[tex]2(a - 4)(a + 4)[/tex]

Hope this helps you... :)

#Carry on learning#... :)

Answer:

[tex]\displaystyle 2[a - 4][a + 4][/tex]

Step-by step explanation:

[tex]\displaystyle 2a^2 - 32 \\ 2[a^2 - 16] \\ \\ \boxed{2[a - 4][a + 4]}[/tex]

I am joyous to assist you at any time.