Respuesta :
Solution:
[tex]2(a + 4)(a - 4)[/tex]
Step-by-step explanations:
• Factorize the expression ( 2a² - 32 ). First, which will give us:
[tex]2( {a}^{2} - 16)[/tex]
• But ( a² - 16 ) is a perfect square expression. Therefore it can further be factorized to:
[tex]( {a}^{2} - 16)[/tex]
[tex] = (a - 16) ^{2} [/tex]
[tex] = (a - 4)(a + 4)[/tex]
• Hence joining all them will sum up to..:
[tex]2(a - 4)(a + 4)[/tex]
Hope this helps you... :)
#Carry on learning#... :)
Answer:
[tex]\displaystyle 2[a - 4][a + 4][/tex]
Step-by step explanation:
[tex]\displaystyle 2a^2 - 32 \\ 2[a^2 - 16] \\ \\ \boxed{2[a - 4][a + 4]}[/tex]
I am joyous to assist you at any time.