Suppose that a, b, x and y are real numbers such that ax+by = 1, ax² + by² = 11, ax³ + by³ = 25 and ax⁴ + by⁴ = 83. Find the value of ax⁵ + by⁵.​

Respuesta :

Answer:

[tex]ax^5+ by^5=241[/tex]

Step-by-step explanation:

Given:

  • [tex]ax + by = 1[/tex]
  • [tex]ax^2+ by^2 = 11[/tex]
  • [tex]ax^3+ by^3 = 25[/tex]
  • [tex]ax^4+ by^4 = 83[/tex]

We can re-write the left sides of the given equations as follows:

[tex]ax^2+ by^2=(ax+by)(x+y)-xy(a+b)[/tex]

[tex]ax^3+ by^3=(ax^2+by^2)(x+y)-xy(ax+by)[/tex]

[tex]ax^4+ by^4=(ax^3+by^3)(x+y)-xy(ax^2+by^2)[/tex]

Therefore, following this pattern:

[tex]ax^5+ by^5=(ax^4+by^4)(x+y)-xy(ax^3+by^3)[/tex]

Use the given values and the expanded expressions to create 2 equations to help find the values of (x+y) and xy:

Equation 1

[tex]ax^3+ by^3=(ax^2+by^2)(x+y)-xy(ax+by)[/tex]

[tex]\implies 25=11(x+y)-xy(1)[/tex]

[tex]\implies 25=11(x+y)-xy[/tex]

Equation 2

[tex]ax^4+ by^4=(ax^3+by^3)(x+y)-xy(ax^2+by^2)[/tex]

[tex]\implies 83=25(x+y)-xy(11)[/tex]

[tex]\implies 83=25(x+y)-11xy[/tex]

Multiply Equation 1 by 11:

[tex]\implies 275=121(x+y)-11xy[/tex]

Then subtract Equation 2 from this to eliminate 11xy and find the value of (x+y):

[tex]\implies 192=96(x+y)[/tex]

[tex]\implies (x+y)=2[/tex]

Multiply Equation 1 by 25:

[tex]\implies 625=275(x+y)-25xy[/tex]

Multiply Equation 2 by 11:

[tex]\implies 913=275(x+y)-121xy[/tex]

Subtract the 2nd from the 1st to eliminate 275(x+y) and find the value of xy:

[tex]\implies 288=-96xy[/tex]

[tex]\implies xy=-3[/tex]

Therefore, we now have:

  • [tex]ax^4+ by^4 = 83[/tex]
  • [tex]ax^3+ by^3 = 25[/tex]
  • [tex](x+y)=2[/tex]
  • [tex]xy=-3[/tex]

Substitute these into the equation for ax⁵ + by⁵ and solve:

[tex]\implies ax^5+ by^5=(ax^4+by^4)(x+y)-xy(ax^3+by^3)[/tex]

[tex]\implies ax^5+ by^5=(83)(2)-(-3)(25)[/tex]

[tex]\implies ax^5+ by^5=166+75[/tex]

[tex]\implies ax^5+ by^5=241[/tex]