Respuesta :

[tex]\bold{\huge{\underline{ Solution }}}[/tex]

Given :-

• [tex]\sf{ Polynomial :- ax^{2} + bx + c }[/tex]

• The zeroes of the given polynomial are α and β .

Let's Begin :-

Here, we have polynomial

[tex]\sf{ = ax^{2} + bx + c }[/tex]

We know that,

Sum of the zeroes of the quadratic polynomial

[tex]\sf{ {\alpha} + {\beta} = {\dfrac{-b}{a}}}[/tex]

And

Product of zeroes

[tex]\sf{ {\alpha}{\beta} = {\dfrac{c}{a}}}[/tex]

Now, we have to find the polynomials having zeroes :-

[tex]\sf{ {\dfrac{{\alpha} + 1 }{{\beta}}} ,{\dfrac{{\beta} + 1 }{{\alpha}}}}[/tex]

Therefore ,

Sum of the zeroes

[tex]\sf{ ( {\alpha} + {\dfrac{1 }{{\beta}}} )+( {\beta}+{\dfrac{1 }{{\alpha}}})}[/tex]

[tex]\sf{ ( {\alpha} + {\beta}) + ( {\dfrac{1}{{\beta}}} +{\dfrac{1 }{{\alpha}}})}[/tex]

[tex]\sf{( {\dfrac{ -b}{a}} ) + {\dfrac{{\alpha}+{\beta}}{{\alpha}{\beta}}}}[/tex]

[tex]\sf{( {\dfrac{ -b}{a}} ) + {\dfrac{-b/a}{c/a}}}[/tex]

[tex]\sf{ {\dfrac{ -b}{a}} + {\dfrac{-b}{c}}}[/tex]

[tex]\bold{{\dfrac{ -bc - ab}{ac}}}[/tex]

Thus, The sum of the zeroes of the quadratic polynomial are -bc - ab/ac

Now,

Product of zeroes

[tex]\sf{ ( {\alpha} + {\dfrac{1 }{{\beta}}} ){\times}( {\beta}+{\dfrac{1 }{{\alpha}}})}[/tex]

[tex]\sf{ {\alpha}{\beta} + 1 + 1 + {\dfrac{1}{{\alpha}{\beta}}}}[/tex]

[tex]\sf{ {\alpha}{\beta} + 2 + {\dfrac{1}{{\alpha}{\beta}}}}[/tex]

[tex]\bold{ {\dfrac{c}{a}} + 2 + {\dfrac{ a}{c}}}[/tex]

Hence, The product of the zeroes are c/a + a/c + 2 .

We know that,

For any quadratic equation

[tex]\sf{ x^{2} + ( sum\: of \:zeroes )x + product\:of\: zeroes }[/tex]

[tex]\bold{ x^{2} + ( {\dfrac{ -bc - ab}{ac}} )x + {\dfrac{c}{a}} + 2 + {\dfrac{ a}{c}}}[/tex]

Hence, The polynomial is + (-bc-ab/c)x + c/a + a/c + 2 .

Some basic information :-

• Polynomial is algebraic expression which contains coffiecients are variables.

• There are different types of polynomial like linear polynomial , quadratic polynomial , cubic polynomial etc.

• Quadratic polynomials are those polynomials which having highest power of degree as 2 .

• The general form of quadratic equation is ax² + bx + c.

• The quadratic equation can be solved by factorization method, quadratic formula or completing square method.