Respuesta :

[tex]\\ \rm\Rrightarrow \dfrac{AB}{AD}=\dfrac{BC}{CD}[/tex]

[tex]\\ \rm\Rrightarrow \dfrac{18}{x}=\dfrac{19}{11}[/tex]

[tex]\\ \rm\Rrightarrow 19x=198[/tex]

[tex]\\ \rm\Rrightarrow x=10.4[/tex]

Answer:

x = 10.4 (nearest tenth)

Step-by-step explanation:

Angle Bisector Theorem

The angle bisector of any angle in a triangle will divide the side opposite the bisected angle in the ratio of the sides containing the angle.

Therefore:

AD : DC = BA : BC

Given:

  • AD = x
  • DC = 11
  • BA = 18
  • BC = 19

Substituting the given values into the ratio and solving for x:

[tex]\implies \sf x : 11 = 18 : 19[/tex]

[tex]\implies \sf \dfrac{x}{11}=\dfrac{18}{19}[/tex]

[tex]\implies \sf 19x=18 \cdot 11[/tex]

[tex]\implies \sf 19x=198[/tex]

[tex]\implies \sf x=\dfrac{198}{19}[/tex]

[tex]\implies \sf x=10.4 \: (nearest\:tenth)[/tex]