Write the symbolic expression for each of the following descriptions, then get rid of the radical and make them exponential expressions in fractional form.

11. The eighth root of fifty-seven to the sixth degree
12. The square root of Y to the fourteenth degree
13. The nth root of m to the o plus p degree.
14. The fifth root plus x of eighty-one to the third power.
15. The cube root of five squared.

Respuesta :

Answer:

11. [tex]57^{6/8}[/tex]

12. [tex]Y^{14/2}[/tex]

13. [tex]m^{\frac{o+p}{n}}[/tex]

14. [tex]81^{\frac{3}{50+x}}[/tex]

15. [tex]5^{2/3}[/tex]

Step-by-step explanation:

When converting from radicals to rational exponents, there's a quick, easy rule to remember:

  • [tex]\sqrt[n]{x} =\sqrt[\text{index}]{\text{radicand}}[/tex]
  • the exponent is [tex]\frac{\text{power}}{\text{root}}[/tex]
  • [tex]\sqrt[n]{x} = x^{1/n}[/tex]

The "power" represents the exponent of the radical/radicand, while the "root" represents the index.

11. the eight root of fifty-seven to the sixth degree.

  1. Write the expression in radical form: [tex]\sqrt[8]{57^6}[/tex]
  2. Rewrite using the exponent rule (power over root): [tex]57^{6/8}[/tex]

12. the square root of Y to the fourteenth power.

  1. Write the expression in radical form: [tex]\sqrt[2]{Y^{14}}[/tex]
  2. Rewrite using the exponent rule (power over root): [tex]Y^{14/2}[/tex]

13. the nth root of m to the o plus p degree.

  1. Write the expression in radical form: [tex]\sqrt[n]{m^{o+p}}[/tex]
  2. Rewrite using the exponent rule (power over root): [tex]m^{\frac{o+p}{n}}[/tex]

14. The fifth root plus x of eighty-one to the third power.

  1. Write the expression in radical form: [tex]\sqrt[5+x]{81^{3}}[/tex]
  2. Rewrite using the exponent rule (power over root): [tex]81^{\frac{3}{50+x}}[/tex]

15. The cube root of five squared.

  1. Write the expression in radical form: [tex]\sqrt[3]{5^{2}}[/tex]
  2. Rewrite using the exponent rule (power over root): [tex]5^{2/3}[/tex]